How to Build a Neurosymbolic Adapter: A Developer’s Guide
From Fine-Tuning to Full-Fledged Reasoning
In our previous series on fine-tuning small LLMs, we walked through the entire process of taking a base language model and adapting it for a specific task. We covered everything from setting up a Docker environment and preparing a high-quality dataset to using Unsloth for efficient LoRA fine-tuning, and finally deploying and monitoring the model in a production environment. We demonstrated that it’s possible to achieve impressive performance on a specific task, even on consumer-grade hardware.
However, fine-tuning alone, no matter how effective, runs into a wall. Language models, at their core, are probabilistic pattern matchers. They don’t understand logic, constraints, or the ground truth of a structured environment like a database schema. For a task like SQL generation, this presents critical challenges:
- Semantic Errors: An LLM can generate perfectly valid SQL that is logically incorrect for the user’s request.
- Constraint Violations: It may ignore
PRIMARY KEY
,FOREIGN KEY
, orNOT NULL
constraints because it doesn’t comprehend their meaning. - Lack of Explainability: When it makes a mistake, it cannot explain why in a deterministic, logical way.
- Brittleness: A slight change in the schema or a novel query can lead to unpredictable and incorrect results.
To overcome these limitations, we need to go beyond simple fine-tuning. We need to build a system that combines the generative power of neural networks with the rigorous, verifiable logic of a symbolic reasoning system. This is the essence of neurosymbolic AI.
This guide is the next chapter in our journey. We will show you how to build a Neurosymbolic SQL Adapter from the ground up—a system that not only generates SQL but also understands, validates, and explains it. We’ll move from simply fine-tuning a model to architecting a robust, reliable, and production-ready hybrid AI.
The Goal: A Hybrid AI for SQL
A neurosymbolic SQL adapter is a hybrid AI system that bridges the gap between neural language models and symbolic reasoning engines. It enhances fine-tuned SQL language models with:
- Symbolic Logic Validation: Real-time constraint checking against a database schema.
- Explainable Reasoning: Human-readable explanations for generated queries and validation results.
- Constraint Enforcement: Guarantees that generated SQL adheres to database rules.
- Confidence Assessment: Quantifies the system’s uncertainty about its output.
Architecture: The Two Worlds Collide
Our system is composed of two primary components that work in concert: the Neural Core for generation and the Symbolic Guardian for validation. A sophisticated Bridge Layer connects them, allowing them to communicate.
graph TD
A[User Input<br/>Natural Language + Schema] --> B{Neural Core<br/>Fine-Tuned LLM + LoRA}
B -- Generated SQL --> C(Neurosymbolic Bridge<br/>Neural ↔ Symbolic)
C -- Translated Facts --> D{Symbolic Guardian<br/>SimpleLogicEngine}
D -- Validation Results --> E[Validated & Explained Output<br/>SQL + Confidence + Explanation]
style A fill:#e1f5fe
style B fill:#f3e5f5
style C fill:#e8f5e8
style D fill:#fff3e0
style E fill:#fce4ec
Let’s build each of these components step-by-step.
Part 1: Building the Neural Core - The SQL Generator
The Neural Core is responsible for the heavy lifting of translating natural language into a SQL query. It’s built around a powerful base LLM and made efficient with LoRA.
The NeurosymbolicAdapter
The heart of our neural core is the NeurosymbolicAdapter
. This PyTorch module wraps a base language model and integrates parameter-efficient fine-tuning (PEFT) using LoRA. This allows us to adapt a massive model for our specific SQL generation task without retraining all of its billions of parameters.
The configuration is managed by a simple dataclass, AdapterConfig
, which defines the LoRA parameters and the dimensions for our neurosymbolic components.
# src/adapters/neurosymbolic_adapter.py
@dataclass
class AdapterConfig:
"""Configuration for neurosymbolic adapter"""
lora_r: int = 16
lora_alpha: int = 32
lora_dropout: float = 0.1
target_modules: List[str] = None
bridge_dim: int = 512
symbolic_dim: int = 256
# ... and other configs
The adapter itself is a nn.Module
that loads the base model and applies the LoRA configuration. It’s designed to be extended with our other neurosymbolic components.
# src/adapters/neurosymbolic_adapter.py
class NeurosymbolicAdapter(nn.Module):
"""
Neurosymbolic Adapter for SQL Generation
"""
def __init__(self, base_model_name: str, config: Optional[AdapterConfig] = None):
super().__init__()
self.config = config or AdapterConfig()
self.base_model = self._load_base_model(base_model_name)
self.lora_model = self._setup_lora_adapter()
# These will be connected later
self.bridge_layer = None
self.confidence_estimator = None
self.fact_extractor = None
def forward(self, input_ids: torch.Tensor, ...):
# Standard language model forward pass
model_outputs = self.lora_model.forward(...)
logits = model_outputs.logits
hidden_states = model_outputs.last_hidden_state
# ... hooks for neurosymbolic components ...
return NeurosymbolicOutput(logits=logits, ...)
Part 2: Building the Symbolic Guardian - The SQL Validator
An LLM might generate syntactically correct SQL that is semantically nonsense or violates database constraints. Our Symbolic Guardian acts as a gatekeeper, ensuring the generated SQL is valid and logical.
The Challenge: Escaping Dependency Hell
Initially, we considered using established reasoning engines like PyReason. However, we quickly ran into persistent compilation issues with its dependencies like numba
and LLVM
, which varied across Python versions and operating systems.
# Typical PyReason errors we encountered:
ERROR: Cannot unify int64 and Tuple(...) for 'i.24'
ERROR: Could not find a `llvm-config` binary
ERROR: numba compilation failed
Our Solution: The SimpleLogicEngine
To ensure our adapter was production-ready and easy to deploy, we built our own reasoning engine from scratch. The SimpleLogicEngine
is a pure-Python, zero-dependency forward-chaining engine designed specifically for SQL constraint validation.
It operates on two simple concepts: LogicFact
and LogicRule
.
# src/reasoning/simple_logic_engine.py
@dataclass(frozen=True)
class LogicFact:
predicate: str
arguments: tuple
confidence: float = 1.0
@dataclass
class LogicRule:
head: LogicFact
body: List[LogicFact]
confidence: float = 1.0
The engine’s core is the reason
method, which iteratively applies rules to the set of known facts to derive new facts. We pre-load it with rules that define common SQL constraint violations.
# src/reasoning/simple_logic_engine.py
class SimpleLogicEngine:
def __init__(self):
self.facts: Set[LogicFact] = set()
self.rules: List[LogicRule] = []
self._initialize_sql_rules()
def _initialize_sql_rules(self):
# Rule for foreign key violations
self.add_rule_from_string(
"violation(foreign_key_invalid) :- foreign_key(T1, C1, T2, C2), missing_reference(T1, C1, T2, C2)"
)
# Rule for NOT NULL violations
self.add_rule_from_string(
"violation(not_null) :- not_null_constraint(Table, Column), null_value(Table, Column)"
)
# ... and 4 other built-in rule types
def reason(self, max_iterations: int = 10) -> Dict[str, Any]:
"""Forward chaining reasoning with violation detection"""
# ... implementation ...
From SQL to Facts: The SQLToFactsConverter
How does the SimpleLogicEngine
know about the SQL query? We use the SQLToFactsConverter
. This utility parses a SQL query string and a database schema into a list of LogicFact
s.
For example, the query SELECT name FROM users WHERE id = 1
becomes a set of facts:
query_type(select)
query_references_table(users)
query_references_column(users, name)
query_has_condition(...)
query_has_literal(1, integer)
The converter uses sqlparse
and regular expressions to analyze the query and schema, creating a symbolic representation for the logic engine to process.
# src/reasoning/sql_to_facts.py
class SQLToFactsConverter:
def __init__(self, knowledge_base: Optional[SQLKnowledgeBase] = None):
self.logger = logging.getLogger(__name__)
self.knowledge_base = knowledge_base
def convert_query_to_facts(self, sql_query: str) -> List[str]:
facts = []
analysis = self.analyze_query(sql_query)
facts.append(f"query_type({analysis.query_type.value.lower()})")
for table in analysis.tables:
facts.append(f"query_references_table({table})")
# ... and so on
return facts
Part 3: The Neurosymbolic Bridge - Connecting the Two Worlds
This is where the magic happens. The BridgeLayer
is the component that makes our system truly neurosymbolic. It translates the rich, continuous representations from the neural network’s hidden states into the discrete, logical world of the symbolic engine.
The BridgeLayer
is a sophisticated nn.Module
containing its own transformer blocks. It takes the final hidden state from the LLM and processes it to produce a SymbolicContext
.
# src/adapters/bridge_layer.py
@dataclass
class SymbolicContext:
"""Container for symbolic reasoning context"""
embeddings: torch.Tensor
facts: Optional[List[str]] = None
attention_weights: Optional[torch.Tensor] = None
The bridge uses a series of projections and specialized SymbolicTransformerBlock
s to refine the neural representation. A key innovation here is the use of learned SQL concept embeddings. We create embeddings for ~100 common SQL concepts (e.g., SELECT
, JOIN
, PRIMARY_KEY
) and use attention mechanisms to determine which concepts the LLM is “thinking” about at each point in the generated query.
# src/adapters/bridge_layer.py
class BridgeLayer(nn.Module):
def __init__(self, neural_dim: int = 4096, symbolic_dim: int = 512, ...):
super().__init__()
# ... projections, transformer layers ...
# Learned representations for SQL concepts
self.concept_embeddings = nn.Embedding(100, symbolic_dim)
self.concept_names = self._initialize_concept_names() # ["SELECT", "FROM", ...]
def forward(self, neural_representations: torch.Tensor, ...) -> SymbolicContext:
# Project neural -> bridge space
bridge_repr = self.neural_to_bridge(neural_representations)
# Apply symbolic transformer layers
x = bridge_repr
for layer in self.transformer_layers:
x, attn_weights = layer(x)
# Project bridge -> symbolic space
symbolic_embeddings = self.bridge_to_symbolic(x)
# Extract facts and other symbolic info
extracted_facts = self._extract_facts(symbolic_embeddings, ...)
return SymbolicContext(
embeddings=symbolic_embeddings,
facts=extracted_facts,
...
)
This bridge allows for a much deeper integration than simply passing the final text output from one component to the next.
Part 4: The Conductor - Orchestrating the System
The NeurosymbolicSQLModel
is the conductor that orchestrates our entire ensemble. It brings together the neural generator, the symbolic validator, and the bridge that connects them.
Its main method, generate_sql
, follows a clear, logical flow:
- Take a natural language
instruction
and aschema
. - Use the
NeurosymbolicAdapter
(the neural core) to generate a candidate SQL query. - Take the generated SQL and pass it to the
SimpleLogicEngine
(the symbolic guardian) for validation against the schema. - Package everything up into a neat
NeurosymbolicResult
.
# src/integration/hybrid_model.py
class NeurosymbolicSQLModel:
def __init__(self, ...):
# Initialize symbolic components
self.reasoning_engine = PyReasonEngine(...)
self.facts_converter = SQLToFactsConverter(...)
# Initialize neural components
self.model_manager = ModelManager(...)
self.neural_adapter = self.model_manager.load_model(...)
def generate_sql(self, instruction: str, schema: ...) -> NeurosymbolicResult:
# 1. Generate SQL with the neural adapter
generation_result = self._neural_sql_generation(instruction, schema)
generated_sql = generation_result['sql']
# 2. Validate the generated SQL with the symbolic engine
validation_result = self.reasoning_engine.validate_sql(generated_sql, schema)
# 3. Package and return the final result
return NeurosymbolicResult(
sql=generated_sql,
is_valid=validation_result.is_valid,
confidence=validation_result.confidence,
violations=validation_result.violations,
explanation=self._generate_explanation(...),
neural_confidence=generation_result['confidence'],
...
)
The final output, NeurosymbolicResult
, contains everything the end-user needs: the query, its validity, a confidence score, a list of violations, and a human-readable explanation.
# src/integration/hybrid_model.py
@dataclass
class NeurosymbolicResult:
"""Result from neurosymbolic SQL processing"""
sql: str
is_valid: bool
confidence: float
violations: List[str]
explanation: Optional[str] = None
reasoning_trace: Optional[List[str]] = None
neural_confidence: Optional[float] = None
generation_method: str = "mock"
How to Use It: A Practical Example
Putting it all together is straightforward. The examples/basic_integration.py
script shows how to initialize the model and use it to generate and validate SQL.
# examples/basic_integration.py
from src.integration.hybrid_model import NeurosymbolicSQLModel
# 1. Initialize the model
model = NeurosymbolicSQLModel(
base_model="unsloth/llama-3.1-8b-instruct-bnb-4bit"
)
# 2. Define instruction and schema
instruction = "Find all customers who have placed orders worth more than $1000"
schema = "customers (id, name, email), orders (id, customer_id, amount, order_date)"
# 3. Generate and validate
result = model.generate_sql(
instruction=instruction,
schema=schema
)
# 4. Print the results
print(f"Generated SQL:
{result.sql}")
print(f"Is Valid: {result.is_valid}")
print(f"Confidence: {result.confidence:.2f}")
if not result.is_valid:
print(f"Violations: {result.violations}")
This simple interface provides access to the full power of the neurosymbolic pipeline.
Production Deployment Guide
A key goal of this project was to create a system that is not just a research prototype but is ready for production. The following sections provide a comprehensive guide to deploying the Neurosymbolic SQL Adapter in a real-world environment.
Prerequisites
System Requirements
Minimum Configuration:
RAM: 16GB (32GB recommended)
GPU: 8GB VRAM (RTX 3060 or better)
Storage: 50GB free space
CPU: 4+ cores
Recommended Configuration:
RAM: 32GB+
GPU: 16GB+ VRAM (RTX 4080/A100)
Storage: 100GB+ SSD
CPU: 8+ cores with AVX support
Python Environment
# Python 3.8+ (tested on 3.8, 3.9, 3.10, 3.11, 3.13)
python --version # Should be 3.8+
Step 1: Environment Setup
Create Virtual Environment
# Using venv (recommended)
python -m venv neurosymbolic-env
source neurosymbolic-env/bin/activate # Linux/Mac
# or
neurosymbolic-env\Scripts\activate # Windows
# Using conda (alternative)
conda create -n neurosymbolic python=3.11
conda activate neurosymbolic
Install Dependencies
# Clone the repository
git clone https://github.com/saptak/neurosymbolic-sql-adapter.git
cd neurosymbolic-sql-adapter
# Install core dependencies
pip install torch>=2.0.0 transformers>=4.30.0 peft>=0.4.0
pip install networkx>=3.1 sqlparse>=0.4.4 pandas>=2.0.0
pip install numpy>=1.24.0 pyyaml>=6.0 tqdm>=4.65.0
# Install development dependencies (optional)
pip install pytest>=7.4.0 black>=23.3.0 isort>=5.12.0
Step 2: Configuration Setup
Create Production Configuration
# configs/production_config.yaml
neurosymbolic:
reasoning_engine: "SimpleLogicEngine"
confidence_threshold: 0.8
max_reasoning_iterations: 10
enable_explanation: true
neural:
model_name: "unsloth/llama-3.1-8b-instruct-bnb-4bit"
adapter_config:
r: 16
alpha: 32
target_modules: ["q_proj", "v_proj", "k_proj", "o_proj"]
dropout: 0.1
validation:
enable_constraint_checking: true
enable_confidence_estimation: true
violation_tolerance: 0
logging:
level: "INFO"
file: "logs/neurosymbolic.log"
format: "% (asctime)s - % (name)s - % (levelname)s - % (message)s"
Database Schema Configuration
{
"users": {
"columns": {
"id": {"type": "INTEGER", "nullable": false},
"email": {"type": "VARCHAR(255)", "nullable": false},
"name": {"type": "VARCHAR(100)", "nullable": false}
},
"primary_key": ["id"],
"unique_constraints": [["email"]]
},
"orders": {
"columns": {
"id": {"type": "INTEGER", "nullable": false},
"user_id": {"type": "INTEGER", "nullable": false},
"total": {"type": "DECIMAL(10,2)", "nullable": false}
},
"primary_key": ["id"],
"foreign_keys": [{"columns": ["user_id"], "references": ["users", "id"]}]
}
}
Step 3: Application Initialization
Basic Production Setup
# main.py
import logging
from src.integration.hybrid_model import HybridModel
from src.reasoning.pyreason_engine import PyReasonEngine
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('logs/neurosymbolic.log'),
logging.StreamHandler()
]
)
def initialize_neurosymbolic_adapter():
"""Initialize the neurosymbolic SQL adapter for production"""
# Load configuration
config_path = "configs/production_config.yaml"
# Initialize reasoning engine
reasoning_engine = PyReasonEngine(config_path)
# Initialize hybrid model
hybrid_model = HybridModel(
config_path=config_path,
reasoning_engine=reasoning_engine
)
# Verify system status
status = hybrid_model.get_system_status()
logging.info(f"System initialized: {status}")
return hybrid_model
if __name__ == "__main__":
adapter = initialize_neurosymbolic_adapter()
print("Neurosymbolic SQL Adapter ready for production!")
Step 4: API Integration
Flask REST API Example
# api.py
from flask import Flask, request, jsonify
from main import initialize_neurosymbolic_adapter
import logging
app = Flask(__name__)
adapter = initialize_neurosymbolic_adapter()
@app.route('/generate-sql', methods=['POST'])
def generate_sql():
"""Generate SQL with neurosymbolic validation"""
try:
data = request.json
natural_language = data.get('query')
schema = data.get('schema')
# Generate SQL with validation
result = adapter.generate_and_validate_sql(
natural_language=natural_language,
schema=schema
)
return jsonify({
'sql_query': result.sql_query,
'is_valid': result.is_valid,
'confidence': result.confidence,
'violations': result.violations,
'explanation': result.explanation,
'reasoning_trace': result.reasoning_trace
})
except Exception as e:
logging.error(f"SQL generation error: {e}")
return jsonify({'error': str(e)}), 500
@app.route('/health', methods=['GET'])
def health_check():
"""Health check endpoint"""
status = adapter.get_system_status()
return jsonify(status)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8000, debug=False)
FastAPI Alternative
# fastapi_api.py
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from main import initialize_neurosymbolic_adapter
import logging
app = FastAPI(title="Neurosymbolic SQL Adapter API", version="1.0.0")
adapter = initialize_neurosymbolic_adapter()
class SQLRequest(BaseModel):
query: str
schema: dict
class SQLResponse(BaseModel):
sql_query: str
is_valid: bool
confidence: float
violations: list
explanation: str
reasoning_trace: list
@app.post("/generate-sql", response_model=SQLResponse)
async def generate_sql(request: SQLRequest):
"""Generate SQL with neurosymbolic validation"""
try:
result = adapter.generate_and_validate_sql(
natural_language=request.query,
schema=request.schema
)
return SQLResponse(
sql_query=result.sql_query,
is_valid=result.is_valid,
confidence=result.confidence,
violations=result.violations,
explanation=result.explanation,
reasoning_trace=result.reasoning_trace
)
except Exception as e:
logging.error(f"SQL generation error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return adapter.get_system_status()
Step 5: Docker Deployment
Dockerfile
# Dockerfile
FROM python:3.11-slim
# Set working directory
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y \
git \
curl \
&& rm -rf /var/lib/apt/lists/*
# Copy requirements first (for better caching)
COPY requirements.txt .
# Install Python dependencies
RUN pip install --no-cache-dir -r requirements.txt
# Copy application code
COPY . .
# Create logs directory
RUN mkdir -p logs
# Set environment variables
ENV PYTHONPATH=/app
ENV NEUROSYMBOLIC_CONFIG_PATH=/app/configs/production_config.yaml
# Expose port
EXPOSE 8000
# Health check
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
CMD curl -f http://localhost:8000/health || exit 1
# Run application
CMD ["python", "api.py"]
Docker Compose for Production
# docker-compose.yml
version: '3.8'
services:
neurosymbolic-adapter:
build: .
ports:
- "8000:8000"
environment:
- PYTHONPATH=/app
- NEUROSYMBOLIC_CONFIG_PATH=/app/configs/production_config.yaml
volumes:
- ./logs:/app/logs
- ./configs:/app/configs
restart: unless-stopped
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
interval: 30s
timeout: 10s
retries: 3
deploy:
resources:
limits:
memory: 8G
reservations:
memory: 4G
nginx:
image: nginx:alpine
ports:
- "80:80"
- "443:443"
volumes:
- ./nginx.conf:/etc/nginx/nginx.conf
- ./ssl:/etc/nginx/ssl
depends_on:
- neurosymbolic-adapter
restart: unless-stopped
prometheus:
image: prom/prometheus
ports:
- "9090:9090"
volumes:
- ./prometheus.yml:/etc/prometheus/prometheus.yml
restart: unless-stopped
grafana:
image: grafana/grafana
ports:
- "3000:3000"
environment:
- GF_SECURITY_ADMIN_PASSWORD=admin
volumes:
- grafana-storage:/var/lib/grafana
restart: unless-stopped
volumes:
grafana-storage:
Step 6: Monitoring and Logging
Prometheus Metrics Configuration
# prometheus.yml
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'neurosymbolic-adapter'
static_configs:
- targets: ['neurosymbolic-adapter:8000']
metrics_path: '/metrics'
scrape_interval: 5s
Application Metrics
# metrics.py
from prometheus_client import Counter, Histogram, Gauge, start_http_server
import time
# Metrics
sql_generation_requests = Counter('sql_generation_requests_total', 'Total SQL generation requests')
sql_generation_duration = Histogram('sql_generation_duration_seconds', 'SQL generation duration')
sql_validation_accuracy = Gauge('sql_validation_accuracy', 'SQL validation accuracy')
active_reasoning_sessions = Gauge('active_reasoning_sessions', 'Active reasoning sessions')
def track_metrics(func):
"""Decorator to track function metrics"""
def wrapper(*args, **kwargs):
sql_generation_requests.inc()
start_time = time.time()
try:
result = func(*args, **kwargs)
sql_validation_accuracy.set(result.confidence)
return result
finally:
sql_generation_duration.observe(time.time() - start_time)
return wrapper
# Start metrics server
start_http_server(8001)
Step 7: Production Deployment Commands
Build and Deploy
# Build Docker image
docker build -t neurosymbolic-sql-adapter:latest .
# Run with Docker Compose
docker-compose up -d
# Check logs
docker-compose logs -f neurosymbolic-adapter
# Health check
curl http://localhost:8000/health
# Test SQL generation
curl -X POST http://localhost:8000/generate-sql \
-H "Content-Type: application/json" \
-d '{
"query": "Find all users who have placed orders over $100",
"schema": {
"users": {"columns": {"id": "INTEGER", "name": "VARCHAR"}},
"orders": {"columns": {"id": "INTEGER", "user_id": "INTEGER", "total": "DECIMAL"}}
}
}'
Kubernetes Deployment (Advanced)
```yaml
k8s-deployment.yaml
apiVersion: apps/v1 kind: Deployment metadata: name: neurosymbolic-adapter spec: replicas: 3 selector: matchLabels: app: neurosymbolic-adapter template: metadata: labels: app: neurosymbolic-adapter spec: containers: - name: neurosymbolic-adapter image: neurosymbolic-sql-adapter:latest ports: - containerPort: 8000 resources: requests: memory: “4Gi” cpu: “1000m” limits: memory: “8Gi” cpu: “2000m” env: - name: PYTHONPATH value: “/app” livenessProbe: httpGet: path: /health port: 8000 initialDelaySeconds: 30 periodSeconds: 10 readinessProbe: httpGet: path: /health port: 8000 initialDelaySeconds: 5 periodSeconds: 5
author: ‘’ categories:
- AI
- Machine Learning
- SQL
- Neurosymbolic AI
- Tutorial date: 2025-08-25 description: A detailed, narrative guide to building a neurosymbolic SQL adapter from scratch, combining neural language models with a custom symbolic reasoning engine for enhanced SQL generation. featured: true header_image_path: /assets/img/blog/headers/2025-08-25-neurosymbolic-sql-adapter.jpg image: /assets/images/neurosymbolic-sql-adapter-architecture.png image_credit: Photo by Hal Gatewood on Unsplash image_credit_url: https://unsplash.com/photos/purple-and-pink-plasma-ball-OgvqXGL7XO4 layout: post tags:
- PyTorch
- Transformers
- LoRA
- Symbolic Reasoning
- SQL Generation
- Production AI
- Python thumbnail_path: /assets/img/blog/thumbnails/2025-08-25-neurosymbolic-sql-adapter.jpg title: ‘How to Build a Neurosymbolic Adapter: A Developer’’s Guide’ toc: true —
About This Project
This project was developed to demonstrate and address challenges in AI-powered SQL generation while maintaining production-grade reliability and performance. The focus was on creating a robust neurosymbolic system that combines the best of neural and symbolic approaches.
Saptak Sen
If you enjoyed this post, you should check out my book: Starting with Spark.